Introduction: Mini-implants are now widely accepted as anchorage for orthodontic tooth movement because of the convenience of the placement procedure, their comparative low cost, and the fact that they can be immediately loaded after surgery. In this study, we incorporated a finite element approach and factorial analysis to determine the biomechanical effects of exposure length of the mini-implant, the insertion angle, and the direction of orthodontic force.
Methods: Twenty-seven finite element models were constructed to simulate the biomechanical response of the alveolar bone adjacent to the mini-implant. Factorial analysis was performed to investigate the comparative influence of each factor.
Results: The simulation results showed that the exposure length of the mini-implant had a statistically significant influence on bone stress, with a contribution of 82.35%. Increased exposure length resulted in higher bone stress adjacent to the mini-implant. Whereas all factors investigated had a statistically significant influence on cancellous bone stress, the stress values associated with cancellous bone were much less than those of cortical bone.
Conclusions: Increased exposure lengths resulted in higher bone stresses adjacent to the mini-implant. The percentage of contribution of the insertion angle of the mini-implant (6.03%) was also statistically significant but much less than that of the exposure length (82.35%). The direction of orthodontic force had no significant effect on cortical bone stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2012.09.012 | DOI Listing |
PLoS One
January 2025
Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China.
The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Biomechanics, Poznan University of Physical Education, Poznań, Poland.
This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: Recent studies suggest that iron and neuroinflammation are key components of Alzheimer's Disease (AD) pathology. Ferrous Fe can cause oxidative stress and cellular toxicity, but it is unknown to what extent Fe is elevated in AD, in particular with the hippocampus. To answer this question, we quantified iron oxidation state in frozen human brain hippocampi.
View Article and Find Full Text PDFJ Indian Prosthodont Soc
January 2025
Department of Prosthodontics, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India.
Aim: The aim is to evaluate and compare stress distribution characteristics of ball, magnet, and positioned attachment systems in single and double implant-retained overdentures using the finite element method (FEM).
Setting And Design: In vitro (in silico study) finite element analysis (FEA).
Materials And Methods: A Styrofoam mandible with duplicated silicon mucosa was used to construct a mandibular complete denture.
Dan Med J
November 2024
Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital - Amager and Hvidovre Hospital, Denmark.
Introduction: High tibial osteotomy (HTO) is used to treat medial knee osteoarthritis (OA). A simple clinical test to select the patients most likely to benefit from the procedure was suggested by R. A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!