Introduction: The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance.
Methods: Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references.
Results: The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction.
Conclusions: Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2012.09.010 | DOI Listing |
Biomedicines
January 2025
Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania.
The incidence rate of cutaneous melanoma is on the rise worldwide, due to increased exposure to UV radiation, aging populations, and exposure to teratogen agents. However, diagnosis is more precise, and the increased number of new cases is related to the improved diagnosis tools. Despite better early diagnosis and better therapies, melanoma has remained a significant public health challenge because of its aggressive behavior and high potential for metastasis.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China.
Platinum resistance is a common cause of chemotherapy failure in lung adenocarcinoma (LUAD). Competing endogenous RNAs (ceRNAs), which function by competitively binding to miRNAs, can influence drug response. However, the regulatory mechanisms of ceRNAs underlying chemoresistance in LUAD remain largely unknown.
View Article and Find Full Text PDFIUBMB Life
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Department of Orthopaedics, Seventh People's Hospital of Shanghai University of TCM, Shanghai, 200137, China.
Introduction: The modified pedicle screw fixation (PSF) was designed to simulate an integrated framework structure to ameliorate the resistance to vertical and shearing forces of the disrupted sacroiliac complex, and the aim of this study was to compare the biomechanical characteristics of PSF and traditional lumbopelvic fixation (LPF) for the treatment of sacroiliac joint disruption.
Methods: The digital computer simulation model of an intact spine-pelvis-femur complex with main ligaments was built from clinical images. A left sacroiliac joint disruption model was mimicked by removing the concerned ligaments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!