Heterologous expression of Candida albicans Pma1p in Saccharomyces cerevisiae.

FEMS Yeast Res

The Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand.

Published: May 2013

Candida albicans is a major cause of opportunistic and life-threatening systemic fungal infections, especially in the immunocompromised. The plasma membrane proton-pumping ATPase (Pma1p) is an essential enzyme that generates the electrochemical gradient required for cell growth. We expressed C. albicans Pma1p (CaPma1p) in Saccharomyces cerevisiae to facilitate screening for inhibitors. Replacement of S. cerevisiae PMA1 with C. albicans PMA1 gave clones expressing CaPma1p that grew slowly at low pH. CaPma1p was expressed at significantly lower levels and had lower specific activity than the native Pma1p. It also conferred pH sensitivity, hygromycin B resistance, and low levels of glucose-dependent proton pumping. Recombination between CaPMA1 and the homologous nonessential ScPMA2 resulted in chimeric suppressor mutants that expressed functional CaPma1p with improved H(+) -ATPase activity and growth rates at low pH. Molecular models of suppressor mutants identified specific amino acids (between 531 and 595 in CaPma1p) that may affect regulation of the activity of Pma1p oligomers in S. cerevisiae. A modified CaPma1p chimeric construct containing only 5 amino acids from ScPma2p enabled the expression of a fully functional enzyme for drug screens and structural resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428687PMC
http://dx.doi.org/10.1111/1567-1364.12035DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
saccharomyces cerevisiae
8
suppressor mutants
8
amino acids
8
capma1p
6
pma1p
5
heterologous expression
4
expression candida
4
albicans pma1p
4
pma1p saccharomyces
4

Similar Publications

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

A Novel and Robust Method for Investigating Fungal Biofilm.

Bio Protoc

January 2025

Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.

, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Background: There is ample evidence showing the development of nystatin-resistant strains in patients undergoing malignancy treatment. Amphotericin B is a polyene antifungal drug that combines with ergosterol to cause cell death and is more effective on fungal species than routine antifungals such as nystatin. This study aimed to compare the effect of nystatin and amphotericin B on fungal species isolated from patients before and during head-and-neck radiotherapy.

View Article and Find Full Text PDF

Antifungal effect of atorvastatin in comparison with fluconazole on species isolated from patients undergoing head-and-neck radiotherapy.

Dent Res J (Isfahan)

December 2024

Department of Oral and Maxillofacial Medicine, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.

Background: Head-and-neck radiotherapy can change oral species and lead to the development of refractory oral candidiasis resistant to the commonly prescribed antifungal medications such as fluconazole. Atorvastatin exerts an antifungal effect by inhibiting the synthesis of fungal wall ergosterol and impairing mitochondrial function. This study aimed to compare the antifungal effects of fluconazole and atorvastatin on species isolated from patients undergoing head-and-neck radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!