The repair of various segmental tibial bone defects continues to be a challenging part of many reconstructive procedures. Many methods have been tried to repair the defects, followed by many complications and the results may be unsatisfied. Since 2001 Zuk et al. established human adipose-derived stem cells (hASCs) as a multipotent stem cell population with the ability to assume osteogenic phenotypes through chemically induced differentiation, hASCs represent a valuable tool for pharmacological and biological studies of osteoblast differentiation in vitro and bone development in vivo, and have been proved to be a useful source of stem cells in bone repair. Recently, hASCs have been found to repair both animals and human calvarial defects. In this paper, we hypothesize that hASCs cultured on custom scaffolds can be used to repair of tibial segmental bone defects with intramedullary nail internal fixed. Unlike current treatment modalities, it would promote the regeneration of tibial defects, provide structural support and allow for weight bearing and bony substitution over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2012.12.032 | DOI Listing |
Sci Rep
January 2025
Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
In cases of large mandibular continuity defects resulting from malignancy resection, the current standard of care involves using patient-specific/custom titanium reconstruction plates along with autogenous grafts (fibula, scapula, or iliac crest segments). However, when grafts are not feasible or desired, only the reconstruction plate is used to bridge the gap. Unfortunately, metal osteosynthesis and reconstruction plates, including titanium, exhibit adverse effects such as stress-shielding and limitations in accurate postoperative irradiation (especially with proton-beam therapy).
View Article and Find Full Text PDFTransl Oncol
January 2025
Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea. Electronic address:
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFJ Hand Surg Eur Vol
January 2025
Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
Articular malalignment and ulnocarpal impaction can progress to osteoarthritis in the wrist. This may be triggered by tears of the scapholunate ligament (rarely the lunotriquetral ligament) or the foveal lamina of the triangular fibrocartilage complex. In the pre-degenerative stages, radiographic findings are inconclusive, and symptoms may be absent or discrete.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!