Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The G-protein regulatory (GPR) motif serves as a docking site for Gαi-GDP free of Gβγ. The GPR-Gα complex may function at the cell cortex and/or at intracellular sites. GPR proteins include the Group II Activators of G-protein signaling identified in a functional screen for receptor-independent activators of G-protein signaling (GPSM1-3, RGS12) each of which contain 1-4 GPR motifs. GPR motifs are also found in PCP2/L7(GPSM4), Rap1-Gap1 Transcript Variant 1, and RGS14. While the biochemistry of the interaction of GPR proteins with purified Gα is generally understood, the dynamics of this signaling complex and its regulation within the cell remains undefined. Major questions in the field revolve around the factors that regulate the subcellular location of GPR proteins and their interaction with Gαi and other binding partners in the cell. As an initial approach to this question, we established a platform to monitor the GPR-Gαi complex in intact cells using bioluminescence resonance energy transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-407865-9.00009-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!