Modeling active GPCR conformations.

Methods Enzymol

School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, United Kingdom.

Published: July 2013

The most significant advance in modeling GPCR active states has been the β(2)-adrenergic receptor-Gs complex as this essentially transforms active-state modeling into homology modeling. Various different molecular dynamics-based approaches for modeling active states are presented, and a number of key applications discussed. These simulations have given insights into the activation pathway, conformational changes, dimerization, hydration, the ionic lock, ligand binding, protonation, and sodium binding. Crystallography and simulations have shown that the presence of agonist alone is unlikely to be sufficient to form the active state and that restraints applied to the G protein-binding region are required. The role of various microswitches in activation is discussed, including the controversial rotamer toggle switch. The importance of explicitly simulating experimental molecular probes to understand activation is highlighted, along with the need to ensure that such molecules are well parameterized. Approaches to loop modeling are discussed. We argue that the role of successful virtual screening against active models should not be overestimated as the main conformational changes on activation occur in the intracellular region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-407865-9.00002-9DOI Listing

Publication Analysis

Top Keywords

modeling active
8
active states
8
conformational changes
8
modeling
6
active gpcr
4
gpcr conformations
4
conformations advance
4
advance modeling
4
modeling gpcr
4
active
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

Biomed Phys Eng Express

January 2025

Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.

View Article and Find Full Text PDF

Observation of Robust Compressed CuO Octahedra and Exotic Spin Structure in CaCuFeO.

J Am Chem Soc

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!