Above-band-gap optical excitation produces interdependent structural and electronic responses in a multiferroic BiFeO(3) thin film. Time-resolved synchrotron x-ray diffraction shows that photoexcitation can induce a large out-of-plane strain, with magnitudes on the order of half of one percent following pulsed-laser excitation. The strain relaxes with the same nanosecond time dependence as the interband relaxation of excited charge carriers. The magnitude of the strain and its temporal correlation with excited carriers indicate that an electronic mechanism, rather than thermal effects, is responsible for the lattice expansion. The observed strain is consistent with a piezoelectric distortion resulting from partial screening of the depolarization field by charge carriers, an effect linked to the electronic transport of excited carriers. The nonthermal generation of strain via optical pulses promises to extend the manipulation of ferroelectricity in oxide multiferroics to subnanosecond time scales.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.110.037601DOI Listing

Publication Analysis

Top Keywords

charge carriers
8
excited carriers
8
strain
6
electronic
4
electronic origin
4
origin ultrafast
4
ultrafast photoinduced
4
photoinduced strain
4
strain bifeo3
4
bifeo3 above-band-gap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!