A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heparan sulfate: a key regulator of embryonic stem cell fate. | LitMetric

Heparan sulfate: a key regulator of embryonic stem cell fate.

Biol Chem

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.

Published: June 2013

Heparan sulfate (HS) belongs to a class of glycosaminoglycans and is a highly sulfated, linear polysaccharide. HS biosynthesis and modification involves numerous enzymes. HS exists as part of glycoproteins named HS proteoglycans, which are expressed abundantly on the cell surface and in the extracellular matrix. HS interacts with numerous proteins, including growth factors, morphogens, and adhesion molecules, and thereby regulates important developmental processes in invertebrates and vertebrates. Embryonic stem cells (ESCs) are distinguished by their characteristics of self-renewal and pluripotency. Self-renewal allows ESCs to proliferate indefinitely in their undifferentiated state, whereas pluripotency implies their capacity to differentiate into the three germ layers and ultimately all cell types of the adult body. Both traits are tightly regulated by numerous cell signaling pathways. Recent studies have highlighted the importance of HS in the modulation of ESC functions, specifically their lineage fate. Here, we review the current advances that have been made in understanding the structural changes of HS during ESC differentiation and in deciphering the molecular mechanisms by which HS modulates cell fate. Finally, we discuss the applications of heparinoids and chemical inhibitors of HS biosynthesis for the manipulation of ESC culture and directed differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933957PMC
http://dx.doi.org/10.1515/hsz-2012-0353DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
8
embryonic stem
8
cell fate
8
cell
5
sulfate key
4
key regulator
4
regulator embryonic
4
stem cell
4
fate heparan
4
sulfate belongs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!