The melanocortin 2 receptor (MC2R) accessory proteins, MRAP, along with its homolog, MRAP2, are two among a growing number of G protein-coupled receptor accessory proteins that have been identified in recent years. These proteins interact directly with MC2R and are essential for trafficking of this receptor from the endoplasmic reticulum to the cell surface, where it mediates the effects of ACTH. lthough earlier studies have identified MRAP and MRAP2 subtypes in distant species, an overall evolutionary analysis of these families is still missing. Here, we performed a comprehensive evolutionary analysis of the MRAP and MRAP2 homologs based on whole genome sequences. We systematically mined and analyzed the genomes of metazoans to identify these genes. Overall, we identified 70 sequences of MRAP and MRAP2 from 44 species belonging to several vertebrate lineages, including at least 40 new sequences previously not reported in the literature. Herein, we provide evidence that MRAP2 is likely to be the ancestor of the MRAP family because MRAP2-like protein, but not MRAP, was identified in Petromyzon marinus (sea lamprey), which belong to an ancient basal vertebrate lineage. Later in vertebrate evolution, MRAP2 duplicated and gave rise to MRAP in an event before the emergence of actinopterygii (ray-finned fishes). However, we observed losses of MRAP in sarcopterygii (lobe-finned fish), amphibians and reptiles while both subtypes are present in chicken and most mammals studied. Synteny analysis showed a conserved synteny within same lineages and an inversion of gene order between lineages. An evolutionary rate shift analysis indicated that these genes were under high purifying selection. Overall, this study provides a comprehensive analysis of the evolution and gene repertoire of MRAP and MRAP2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2013.01.004DOI Listing

Publication Analysis

Top Keywords

mrap mrap2
16
accessory proteins
12
mrap
9
melanocortin receptor
8
receptor accessory
8
evolutionary analysis
8
mrap2
7
analysis
5
early vertebrate
4
vertebrate origin
4

Similar Publications

The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait.

View Article and Find Full Text PDF

RAMP and MRAP accessory proteins have selective effects on expression and signalling of the CB, CB, GPR18 and GPR55 cannabinoid receptors.

Br J Pharmacol

July 2024

Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Background And Purpose: Receptor activity-modifying proteins (RAMPs) and melanocortin receptor accessory proteins (MRAPs) modulate expression and signalling of calcitonin and melanocortin GPCRs. Interactions with other GPCRs have also been reported. The cannabinoid receptors, CB and CB, and two putative cannabinoid receptors, GPR18 and GPR55, exhibit substantial intracellular expression and there are discrepancies in ligand responsiveness between studies.

View Article and Find Full Text PDF

Identification of MRAP protein family as broad-spectrum GPCR modulators.

Clin Transl Med

November 2022

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown.

Methods: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution.

View Article and Find Full Text PDF

Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in .

Front Endocrinol (Lausanne)

July 2022

Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.

The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian () has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness.

View Article and Find Full Text PDF

Pharmacological evaluation of MRAP proteins on Xenopus neural melanocortin signaling.

J Cell Physiol

September 2021

Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), two neural G protein-coupled receptors are known to be functionally critical for energy balance in vertebrates. As allosteric regulators of melanocortin receptors, melanocortin accessory proteins (MRAPs) are also involved in energy homeostasis. The interaction of MRAPs and melanocortin signaling was previously shown in mammals and zebrafish, but nothing had been reported in amphibians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!