Metaproteome analysis of the microbial communities in agricultural biogas plants.

N Biotechnol

Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.

Published: September 2013

AI Article Synopsis

Article Abstract

In biogas plants agricultural waste and energy crops are converted by complex microbial communities to methane for the production of renewable energy. In Germany, this process is widely applied namely in context of agricultural production systems. However, process disturbances, are one of the major causes for economic losses. In addition, the conversion of biomass, in particular of cellulose, is in most cases incomplete and, hence, insufficient. Besides technical aspects, a more profound characterization concerning the functionality of the microbial communities involved would strongly support the improvement of yield and stability in biogas production. To monitor these communities on the functional level, metaproteome analysis was applied in this study to full-scale agricultural biogas plants. Proteins were extracted directly from sludge for separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent identification with mass spectrometry. Protein profiles obtained with SDS-PAGE were specific for different biogas plants and often stable for several months. Differences of protein profiles were visualized by clustering, which allowed not only the discrimination between mesophilic and thermophilic operated biogas plants but also the detection of process disturbances such as acidification. In particular, acidification of a biogas plant was detected in advance by disappearance of major bands in SDS-PAGE. Identification of proteins from SDS-PAGE gels revealed that methyl CoM reductase, which is responsible for the release of methane during methanogenesis, from the order Methanosarcinales was significantly decreased. Hence, it is assumed that this enzyme might be a promising candidate to serve as a predictive biomarker for acidification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2013.01.002DOI Listing

Publication Analysis

Top Keywords

biogas plants
20
microbial communities
12
metaproteome analysis
8
agricultural biogas
8
process disturbances
8
protein profiles
8
biogas
7
plants
5
analysis microbial
4
communities
4

Similar Publications

This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.

View Article and Find Full Text PDF

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Manipulation of WUSCHEL orthologue expression improves the forage yield and quality in Medicago.

Plant Biotechnol J

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

View Article and Find Full Text PDF

Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory.

Bioresour Technol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China. Electronic address:

Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.

View Article and Find Full Text PDF

Correction: Bubbling insights: unveiling the true sophorolipid biosynthetic pathway by Starmerella bombicola.

Biotechnol Biofuels Bioprod

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!