Background: Next generation sequencing (NGS) technologies have greatly facilitated the rapid and economical detection of pathogenic mutations in human disorders. However, mutation descriptions are hard to be compared and integrated due to various reference sequences and annotation tools adopted in different articles as well as the nomenclature of diseases/traits.
Description: The Human Disease Associated Mutation (HDAM) database is dedicated to collect, standardize and re-annotate mutations for human diseases discovered by NGS studies. In the current release, HDAM contains 1,114 mutations, located in 669 genes and associated with 125 human diseases through literature mining. All mutation records have uniform and unequivocal descriptions of sequence changes according to the Human Genome Sequence Variation Society (HGVS) nomenclature recommendations. Each entry displays comprehensive information, including mutation location in genome (hg18/hg19), gene functional annotation, protein domain annotation, susceptible diseases, the first literature report of the mutation and etc. Moreover, new mutation-disease relationships predicted by Bayesian network are also presented under each mutation.
Conclusion: HDAM contains hundreds rigorously curated human mutations from NGS studies and was created to provide a comprehensive view of these mutations that confer susceptibility to the common disorders. HDAM can be freely accessed at http://www.megabionet.org/HDAM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552701 | PMC |
http://dx.doi.org/10.1186/1755-8794-6-S1-S16 | DOI Listing |
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFNeurol Res Pract
January 2025
Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-Universität Würzburg (JMU), Haus D7, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.
Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.
Trials
January 2025
Université Côte d'Azur, CNRS, LP2M, Nice, France.
Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.
View Article and Find Full Text PDFParasit Vectors
January 2025
Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK.
Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!