Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When a nematic liquid crystal is confined in a porous medium with strong anchoring conditions, topological defects, called disclinations, are stably formed with numerous possible configurations. Since the energy barriers between them are large enough, the system shows multistability. Our lattice Boltzmann simulations demonstrate dynamic couplings between the multistable defect pattern and the flow in a regular porous matrix. At sufficiently low flow speed, the topological defects are pinned at the quiescent positions. As the flow speed is increased, the defects show cyclic motions and nonlinear rheological properties, which depend on whether or not they are topologically constrained in the porous networks. In addition, we discover that the defect pattern can be controlled by controlling the flow. Thus, the flow path is recorded in the porous channels owing to the multistability of the defect patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.257801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!