Quantum gravity extension of the inflationary scenario.

Phys Rev Lett

Institute for Gravitation and the Cosmos & Physics Department, Penn State, University Park, Pennsylvania 16802, USA.

Published: December 2012

Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.109.251301DOI Listing

Publication Analysis

Top Keywords

quantum gravity
8
gravity extension
4
extension inflationary
4
inflationary scenario
4
scenario standard
4
standard inflationary
4
inflationary paradigm
4
paradigm based
4
based quantum
4
quantum field
4

Similar Publications

A Cordial Introduction to Double Scaled SYK.

Rep Prog Phys

January 2025

SISSA, via Bonomea 265, 34136 Trieste, Trieste, 34136, ITALY.

We review recent progress regarding the double scaled Sachdev-Ye-Kitaev model and other p-local quantum mechanical random Hamiltonians. These models exhibit an expansion using chord diagrams, which can be solved by combinatorial methods. We describe exact results in these models, including their spectrum, correlation functions, and Lyapunov exponent.

View Article and Find Full Text PDF

The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox.

Entropy (Basel)

November 2024

Terra Quantum AG, Kornhausstrasse 25, 9000 St. Gallen, Switzerland.

We present the Quantum Memory Matrix (QMM) hypothesis, which addresses the longstanding Black Hole Information Paradox rooted in the apparent conflict between Quantum Mechanics (QM) and General Relativity (GR). This paradox raises the question of how information is preserved during black hole formation and evaporation, given that Hawking radiation appears to result in information loss, challenging unitarity in quantum mechanics. The QMM hypothesis proposes that space-time itself acts as a dynamic quantum information reservoir, with quantum imprints encoding information about quantum states and interactions directly into the fabric of space-time at the Planck scale.

View Article and Find Full Text PDF

The emergence of a local effective theory from a more fundamental theory of quantum gravity with seemingly fewer degrees of freedom is a major puzzle of theoretical physics. A recent approach to this problem is to consider general features of the Hilbert space maps relating these theories. In this work, we construct approximately local observables, or overlapping qubits, from such non-isometric maps.

View Article and Find Full Text PDF

A compact and fast radio-frequency source for efficient Raman sideband cooling.

Rev Sci Instrum

December 2024

MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People's Republic of China.

A compact and fast radio-frequency (RF) source developed for Raman sideband cooling (RSBC) in trapped ion and cold atom experiments is presented. The source is based on direct digital synthesizer, advanced real-time infrastructure for quantum physics, and field programmable gate array. The source has a frequency switching speed of 40 ns and can output continuous μs-level time sequences for RSBC.

View Article and Find Full Text PDF

Proposal for a quantum mechanical test of gravity at millimeter scale.

Sci Rep

December 2024

Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.

The experimental verification of the Newton law of gravity at small scales has been a longstanding challenge. Recently, torsion balance experiments have successfully measured gravitational force at the millimeter scale. However, testing gravity force on quantum mechanical wave function at small scales remains difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!