The appropriate ergonomic design of a wearable robotic device is critical for the effectiveness of the device itself. In this paper we identified two key requirements for a structural ergonomics: the correct kinematic compatibility with the human limb and a comfortable and adaptable physical human-robot interface. We then show how the aforementioned requirements have been faced and implemented in the mechanical design of two wearable devices for elbow and hand rehabilitation, both developed at The BioRobotics Institute of Scuola Superiore Sant' Anna.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2012.6347391 | DOI Listing |
Sensors (Basel)
December 2024
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
Advancements in science and technology have driven the growing use of robots in daily life, with Portable-Powered Lower Limb Exoskeletons (PPLLEs) emerging as a key innovation. The selection of mechanisms, control strategies, and sensors directly influences the overall performance of the exoskeletons, making it a crucial consideration for research and development. This review examines the current state of PPLLE research, focusing on the aspects of mechanisms, control strategies, and sensors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Industrial Design, Guangdong University of Technology, Guangzhou 510006, China.
Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.
The proliferation of flexible pressure sensors has generated new demands for high-sensitivity and low-cost sensors. Here, we propose an elegant strategy to address this challenge by taking a ridge-mimicking, gradient-varying, spatially ordered microstructure as the sensing layer, with laser processing and interdigitated electrodes as the upper and lower electrode layers. Simultaneously, the entire structure is encapsulated with polyimide (PI) tape for protection, and the fabrication process is relatively feasible, facilitating easy scaling.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Characterized by their high sensitivity and flexible deformation, flexible pressure sensors have been extensively applied in various fields such as wearable electronics, health monitoring, soft robotics, and human-computer interaction. In this research, we developed a dual-response pressure sensor (DRPS) designed to identify object materials. By integrating the operating principles of capacitive and resistive sensors and employing microstructured dielectric layers, we enhanced the sensitivity and detection range of the pressure sensor.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China.
Soft capacitive sensors are widely utilized in wearable devices, flexible electronics, and soft robotics due to their high sensitivity. However, they may suffer delamination and/or debonding due to their low interfacial toughness. In addition, they usually exhibit a small measurement range resulting from their limited stiffness variation range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!