We present here a microfabrication process for multi-layer metal, multi-site, polymer-based neural probes. The process has been used to generate 1-, 2-, and 4-layer trace metal neural probes with highly uniform and reproducible electrode characteristics. Typically, increasing the number of metal layers is assumed to both reduce the width of the neural probes and minimize the injury and glial scarring caused at the implantation site. We show, however, that increasing the number of trace metal layers does not always result in the minimal probe cross-sectional area. A thorough design analysis reveals that the electrode size, along with other design parameters, have interacting effects on the probe cross-sectional area. Moreover, increasing the trace metal layers in the neural probes also increases the design and fabrication cost/time, as well as the likelihood of probe failure. Consequently, all of these factors must be considered when designing a multi-site, neural probe with the objective of minimizing tissue damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2012.6347360 | DOI Listing |
Natl Sci Rev
February 2025
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
The development of minimally invasive and reliable electrode probes for neural signal recording is crucial for advancing neuroscience and treating major brain disorders. Flexible neural probes offer superior long-term recording capabilities over traditional rigid probes. This study introduces a parylene-based serpentine electrode probe for stable, long-term neural monitoring.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a form of dementia in which memory and cognitive decline is thought to arise from underlying neurodegeneration. These cognitive impairments, however, are transient when they first appear and can fluctuate across disease progression. Here, we investigate the neural mechanisms underlying fluctuations of performance in amnestic mice.
View Article and Find Full Text PDFRev Neurosci
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
Essentially, the blood-brain barrier (BBB) serves as a line of demarcation between neural tissues and the bloodstream. A unique and protective characteristic of the blood-brain barrier is its ability to maintain cerebral homeostasis by regulating the flux of molecules and ions. The inability to uphold proper functioning in any of these constituents leads to the disruption of this specialized multicellular arrangement, consequently fostering neuroinflammation and neurodegeneration.
View Article and Find Full Text PDFJ Neurosci
January 2025
Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22-hour psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms.
View Article and Find Full Text PDFeNeuro
January 2025
Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Salzburg, Austria
Observing lip movements of a speaker facilitates speech understanding, especially in challenging listening situations. Converging evidence from neuroscientific studies shows stronger neural responses to audiovisual stimuli compared to audio-only stimuli. However, the interindividual variability of this contribution of lip movement information and its consequences on behavior are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!