A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MCNP5 Monte Carlo simulation of amorphous silicon EPID dosimetry from MLC radiation therapy treatment beams. | LitMetric

MCNP5 Monte Carlo simulation of amorphous silicon EPID dosimetry from MLC radiation therapy treatment beams.

Annu Int Conf IEEE Eng Med Biol Soc

The Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Polytechnic University of Valencia, Valencia, Spain.

Published: July 2013

The present work is focused on a MCNP Monte Carlo (MC) simulation of a multi-leaf collimator (MLC) radiation therapy treatment unit including its corresponding Electronic Portal Imaging Device (EPID). We have developed a methodology to perform a spatial calibration of the EPID signal to obtain dose distribution using MC simulations. This calibration is based on several images acquisition and simulation considering different thicknesses of solid water slabs, using a 6 MeV photon beam and a square field size of 20 cm x 20 cm. The resulting relationship between the EPID response and the MC simulated dose is markedly linear. This signal to dose EPID calibration was used as a dosimetric tool to perform the validation of the MLC linear accelerator MCNP model. Simulation results and measurements agreed within 2% of dose difference. The methodology described in this paper potentially offers an optimal verification of dose received by patients under complex multi-field conformal or intensity-modulated radiation therapy (IMRT).

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2012.6347309DOI Listing

Publication Analysis

Top Keywords

radiation therapy
12
monte carlo
8
carlo simulation
8
mlc radiation
8
therapy treatment
8
signal dose
8
epid
5
dose
5
mcnp5 monte
4
simulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!