Cough is a common symptom in a range of respiratory diseases and is considered a natural defense mechanism of the body. Despite its critical importance in the diagnosis of illness, there are no golden methods to objectively assess cough. In a typical consultation session, a physician may briefly listen to the cough sounds using a stethoscope placed against the chest. The physician may also listen to spontaneous cough sounds via naked ears, as they naturally propagate through air. Cough sounds carry vital information on the state of the respiratory system but the field of cough analysis in clinical medicine is in its infancy. All existing cough analysis approaches are severely handicapped by the limitations of the human hearing range and simplified analysis techniques. In this paper, we address these problems, and explore the use of frequencies covering a range well beyond the human perception (up to 90 kHz) and use wavelet analysis to extract diagnostically important information from coughs. Our data set comes from a pediatric respiratory ward in Indonesia, from subjects diagnosed with asthma, pneumonia and rhinopharyngitis. We analyzed over 90 cough samples from 4 patients and explored if high frequencies carried useful information in separating these disease groups. Multiple regression analysis resulted in coefficients of determination (R(2)) of 77-82% at high frequencies (15 kHz-90 kHz) indicating that they carry useful information. When the high frequencies were combined with frequencies below 15kHz, the R(2) performance increased to 85-90%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2012.6347277 | DOI Listing |
Sci Rep
January 2025
Hospital Tuanku Ja'afar, Jalan Rasah, 70300, Seremban, Negeri Sembilan, Malaysia.
The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. Electronic address:
Ethnopharmacological Relevance: Xiao'er Feike Granules (XFG), containing eighteen incompatibilities, is an approved and widely used classical Chinese medicine prescription for the treatment of pediatric respiratory diseases. Extensive clinical studies have reported that XFG demonstrates high efficacy and minimal adverse reactions in treating acute bronchitis (AB). However, there is an urgent need for a more cohesive evaluation of the evidence regarding the safe clinical use of XFG for AB.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
Background: Foreign body inhalation is rare in older children, often leading to underdiagnosis and delayed treatment. Most cases involve a single foreign body, but instances of multiple foreign bodies are exceedingly uncommon. This report presents a case of an elder child who inhaled two pen caps, emphasizing the need for clinical vigilance and thorough medical history collection.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, India, 641010.
The global spread of COVID-19, particularly through cough symptoms, necessitates efficient diagnostic tools. COVID-19 patients exhibit unique cough sound patterns distinguishable from other respiratory conditions. This study proposes an advanced framework to detect and predict COVID-19 using deep learning from cough audio signals.
View Article and Find Full Text PDFUndersea Hyperb Med
January 2025
Department of Hyperbaric Medicine; Kayseri City Hospital, Kayseri, Turkey.
This report details a case study of a non-smoking 33-year-old female nurse who developed occupational asthma as an Inside Attendant (IA) in a hyperbaric chamber. The report analyzes the nurse's medical history, working environment, and potential causes. After beginning work in the hyperbaric chamber, an IA experienced respiratory symptoms, including coughing, wheezing, and fatigue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!