Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epilepsy is a neurological condition with a prevalence of 1%, and 14-34% have medically refractory epilepsy (MRE). Seizures in focal MRE are generated by a single epileptogenic zone (or focus), thus there is potentially a curative procedure - surgical resection. This procedure depends significantly on correct identification of the focus, which is often uncertain in clinical practice. In this study, we analyzed intracranial stereotaxic EEG (sEEG) data recorded in two human patients with drug-resistant epilepsy prior to undergoing resection surgery. We view the sEEG data as samples from the brain network and hypothesize that seizure foci can be identified based on their network connectivity during seizure. Specifically, we computed a time sequence of connectivity matrices from EEG recordings that represent network structure over time. For each patient, connectivity between electrodes was measured using the coherence in a given frequency band. Matrix structure was analyzed using singular value decomposition and the leading singular vector was used to estimate each electrode's time dependent centrality (importance to the network's connectivity). Our preliminary study suggests that seizure foci may be the most weakly connected regions in the brain during the beginning of a seizure and the most strongly connected regions towards the end of a seizure. Additionally, in one of the patients analyzed, the network connectivity under anesthesia highlights seizure foci. Ultimately, network centrality computed from sEEG activity may be used to develop an automated, reliable, and computationally efficient algorithm for identifying seizure foci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2012.6347155 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!