A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brain state evolution during seizure and under anesthesia: a network-based analysis of stereotaxic eeg activity in drug-resistant epilepsy patients. | LitMetric

Epilepsy is a neurological condition with a prevalence of 1%, and 14-34% have medically refractory epilepsy (MRE). Seizures in focal MRE are generated by a single epileptogenic zone (or focus), thus there is potentially a curative procedure - surgical resection. This procedure depends significantly on correct identification of the focus, which is often uncertain in clinical practice. In this study, we analyzed intracranial stereotaxic EEG (sEEG) data recorded in two human patients with drug-resistant epilepsy prior to undergoing resection surgery. We view the sEEG data as samples from the brain network and hypothesize that seizure foci can be identified based on their network connectivity during seizure. Specifically, we computed a time sequence of connectivity matrices from EEG recordings that represent network structure over time. For each patient, connectivity between electrodes was measured using the coherence in a given frequency band. Matrix structure was analyzed using singular value decomposition and the leading singular vector was used to estimate each electrode's time dependent centrality (importance to the network's connectivity). Our preliminary study suggests that seizure foci may be the most weakly connected regions in the brain during the beginning of a seizure and the most strongly connected regions towards the end of a seizure. Additionally, in one of the patients analyzed, the network connectivity under anesthesia highlights seizure foci. Ultimately, network centrality computed from sEEG activity may be used to develop an automated, reliable, and computationally efficient algorithm for identifying seizure foci.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2012.6347155DOI Listing

Publication Analysis

Top Keywords

seizure foci
16
seizure
8
stereotaxic eeg
8
drug-resistant epilepsy
8
seeg data
8
network connectivity
8
connected regions
8
network
5
connectivity
5
brain state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!