Effect of hypothermia on the thalamocortical function in the rat model.

Annu Int Conf IEEE Eng Med Biol Soc

Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Traylor Building, Room 710-C, Baltimore, MD 21205, USA.

Published: July 2013

Neuroprotective effects of hypothermia are well documented in many injuries of the central nervous system in animal models as well as clinical studies. However, the underlying mechanisms are not fully understood. An important yet unexplored background issue is the effect of hypothermic cooling on the regional functionality of the healthy CNS. In a pilot study with the rat model, we seek to characterize the effect of moderate bodily cooling on the thalamo-cortical (T-C) function. Multiunit activity (MUA) and local field potentials (LFPs) were recorded from the thalamus (VPL nucleus) and the somatosensory cortex (S1) for normothermic, mild hypothermic and mild hyperthermic conditions in healthy rats and the thalamo-cortical dynamics was characterized with Granger Causal Interaction (GCI). The GCI indicated that the thalamic driving of the cortical activity significantly increases in strength with bodily cooling and weakens with mild heating. These results could have important implications towards understanding of hypothermia.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2012.6347011DOI Listing

Publication Analysis

Top Keywords

rat model
8
bodily cooling
8
hypothermia thalamocortical
4
thalamocortical function
4
function rat
4
model neuroprotective
4
neuroprotective effects
4
effects hypothermia
4
hypothermia well
4
well documented
4

Similar Publications

Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).

View Article and Find Full Text PDF

Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Background And Objective: Because of the lack of effective targeted treatment options, docetaxel has long been the standard second-line therapy for patients with advanced non-small cell lung cancer, including the Kirsten rat sarcoma virus (KRAS) G12C mutation. The CodeBreak 200 trial demonstrated that sotorasib, a new drug targeting the G12C-mutated KRAS protein, modestly improved progression-free survival compared with docetaxel in patients whose cancer had progressed after receiving platinum chemotherapy and programmed cell death protein 1 (PD-1) / programmed death ligand 1 (PD-L1) inhibitors as first-line treatment. Consequently, sotorasib received temporary approval in Switzerland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!