Ultrasound provides a promising non-invasive, safe, objective means of monitoring and quantifying bone healing. In this paper, the relationship between the ultrasound image intensity and the acoustic impedance was exploited to develop a quantitative measure towards assessment and monitoring of the bone healing process. Information theoretic criterion (KLD) was used to quantify the degree of bone healing using the intensity histogram of the callus region obtained from B-Mode ultrasound. Results from a pilot experimental study, show that the proposed method is capable of accurately quantifying the degree of bone healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2012.6346952 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People's Republic of China.
Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).
Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.
Adv Ther (Weinh)
January 2025
Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFACS Omega
January 2025
Shaanxi University of Chinese Medicine, Xianyang 712046, China.
Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!