The detection of metastases in freshly-excised lymph nodes from cancer patients during lymphadenectomy is critically important for cancer staging, treatment, and optimal patient management. Currently, conventional histologic methods suffer a high rate of false-negative determinations because pathologists cannot evaluate each excised lymph nodes in its entirety. Therefore, lymph nodes are undersampled and and small but clinically relevant metastatic regions can be missed. In this study, quantitative ultrasound (QUS) methods using high-frequency transducers (i.e., > 20 MHz) were developed and evaluated for their ability to detect and guide pathologists towards suspicious regions in lymph nodes. A custom laboratory scanning system was used to acquire radio-frequency (RF) data in 3D from excised lymph nodes using a 26-MHz center-frequency transducer. Overlapping 1-mm cylindrical regions-of-interest (ROIs) of the RF data were processed to yield 13 QUS estimates quantifying tissue microstructure and organization. These QUS methods were applied to more than 260 nodes from more than 160 colorectal-, gastric-, and breast-cancer patients. Cancer-detection performance was assessed for individual estimates and linear combinations of estimates. ROC results demonstrated excellent classification. For colorectal- and gastric-cancer nodes, the areas under the ROC curves (AUCs) were greater than 0.95. Slightly poorer results (AUC=0.85) were obtained for breast-cancer nodes. Images based on QUS parameters also permitted localization of cancer foci in some micrometastatic cases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2012.6346130DOI Listing

Publication Analysis

Top Keywords

lymph nodes
24
nodes
9
quantitative ultrasound
8
guide pathologists
8
excised lymph
8
qus methods
8
lymph
6
three-dimensional quantitative
4
ultrasound guide
4
pathologists metastatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!