Iridium is one of the main electrode materials for applications like neural stimulation. Iridium has a higher charge injection capacity when activated and transformed into AIROF (activated iridium oxide film) using specific electrical signals. Activation is not possible in stimulating devices, if they do not include the necessary circuitry for activation. We introduce a method for iridium electrode activation requiring minimum additional on-chip hardware. In the main part, the lifetime behavior of iridium electrodes is investigated. These results may be interesting for applications not including on-chip activation hardware, and also because activation has drawbacks such as worse mechanical properties and reproducibility of AIROF.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2012.6346057DOI Listing

Publication Analysis

Top Keywords

iridium electrodes
8
neural stimulation
8
stimulation iridium
8
iridium
6
activation
5
vitro study
4
study iridium
4
electrodes neural
4
iridium main
4
main electrode
4

Similar Publications

Enriched Electrophilic Oxygen Species on Ru Optimize Acidic Water Oxidation.

Small

December 2024

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China.

Ruthenium oxide (RuO) is considered one of the most promising catalysts for replacing iridium oxide (IrO) in the acidic oxygen evolution reaction (OER). Nevertheless, the performance of RuO remains unacceptable due to the dissolution of Ru and the lack of *OH in acidic environments. This paper reports a grain boundary (GB)-rich porous RuO electrocatalyst for the efficient and stable acidic OER.

View Article and Find Full Text PDF

Objective: Using electrochemical characterization methods of stimulation electrodes as well as accelerated stimulation examinations, a safe operating field for stimulation is investigated for particularly very large Pt-Ir macroelectrodes in a Laplace configuration.

Approach: Traditional methods such as Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and biphasic, charge balanced current pulses were applied on Pt-Ir macroelectrodes in phosphate buffered saline solution to investigate reversible boundaries. These experiments were adapted to approach realistic working conditions.

View Article and Find Full Text PDF

Iridium (Ir) is the most active and durable anode catalyst for the oxygen evolution reaction (OER) for proton exchange membrane water electrolyzers (PEMWEs). However, their large-scale applications are hindered by high costs and scarcity of Ir. Lowering Ir loadings below 1.

View Article and Find Full Text PDF

The discovery of ferroelectricity in hafnia based thin films has catalyzed significant research focused on understanding the ferroelectric property origins and means to increase stability of the ferroelectric phase. Prior studies have revealed that biaxial tensile stress via an electrode "capping effect" is a suspected ferroelectric phase stabilization mechanism. This effect is commonly reported to stem from a coefficient of thermal expansion (CTE) incongruency between the hafnia and top electrode.

View Article and Find Full Text PDF

Efficient, electrochemical degradation of organic pollutants via nanofibrous Pt/Ir-RuO electrode with enhanced stability.

Chemosphere

December 2024

Department of Applied Organic Materials Engineering, Daejeon, 34134, South Korea. Electronic address:

A diverse range of surfactants and chelating agents are frequently used in industrial processes, especially in the decontamination of nuclear facilities for decommissioning. To treat and degrade these organic pollutants, electrooxidation (EO) has emerged as a cost-effective method. Along these lines, in this work, a nanofibrous electrode was constructed to facilitate efficient EO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!