This paper describes the design and implementation of a cooperative controller that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton to provide enhanced hip extension during the stance phase of walking in persons with paraplegia. The controller utilizes two sources of actuation: the electric motors of the powered exoskeleton and the user's machine (FSM), a set of FES. It consists of a finite-state machine (FSM), a set of proportional-derivative (PD) controllers for the exoskeleton and a cycle-to-cycle adaptive controller for muscle stimulation. Level ground walking is conducted on a single subject with complete T10 paraplegia. Results show a 34% reduction in electrical power requirements at the hip joints during the stance phase of the gait cycle with the cooperative controller compared to using electric motors alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694438PMC
http://dx.doi.org/10.1109/EMBC.2012.6345939DOI Listing

Publication Analysis

Top Keywords

stance phase
12
fes powered
8
powered exoskeleton
8
persons paraplegia
8
cooperative controller
8
electric motors
8
machine fsm
8
fsm set
8
enhancing stance
4
phase propulsion
4

Similar Publications

Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.

View Article and Find Full Text PDF

Background: Orthopaedic surgical intervention in children with Charcot-Marie-Tooth (CMT) often includes triceps surae lengthening (TSL) and foot procedures to address instability and pain due to equinus and cavovarus deformities. These surgeries may unmask underlying weakness in this progressive disease causing increased calcaneal pitch and excessive dorsiflexion in terminal stance leading to crouch. The purpose of this study was to evaluate changes in ankle function during gait following TSL surgery in children with CMT.

View Article and Find Full Text PDF

BACKGROUND The VICON Toolkit enables three-dimensional (3D) motion capture for gait analysis. Statistical parametric mapping (SPM) is a voxel-based neuroimaging approach used to identify region-specific effects. This study aimed to apply SPM to analyze the joint angles of the hip, knee, and ankle during gait in 20 post-stroke patients using the VICON motion capture system.

View Article and Find Full Text PDF

Introduction: Body lateropulsion is a postural disorder characterized by involuntary leaning to one side and is a major symptom in individuals with Wallenberg syndrome. Although the hanger reflex has potential applications as a simple stimulus to control posture, there are no reports of its use in body lateropulsion cases. The case report aims to document the immediate effects of a wire hanger worn around the head on the center of foot pressure and gait pattern parameters.

View Article and Find Full Text PDF

Background: Residual interlimb deficits after anterior cruciate ligament reconstruction (ACLR) can lead to functional maladaptation and increase the risk of reinjury. The tuck jump assessment (TJA) may offer a more effective evaluation of ACLR status as compared with traditional tasks owing to increased risk of altered landing mechanics, asymmetrical landing, and increased knee valgus attributed to the cyclical nature of the task. However, it remains unclear whether altered TJA kinetics resolve over time or persist through return-to-play phases of rehabilitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!