Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C-H conformers. Hydrogen-LTP-exposed graphene on SiO(2) has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556725 | PMC |
http://dx.doi.org/10.3762/bjnano.3.96 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!