Plasticity facilitates sustainable growth in the commons.

J R Soc Interface

Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid, Spain.

Published: April 2013

In the commons, communities whose growth depends on public good, individuals often rely on surprisingly simple strategies, or heuristics, to decide whether to contribute to the shared resource (at risk of exploitation by free-riders). Although this appears a limitation, we show here how four heuristics lead to sustainable growth when coupled to specific ecological constraints. The two simplest ones-contribute permanently or switch stochastically between contributing or not-are first shown to bring sustainability when the public good efficiently promotes growth. If efficiency declines and the commons is structured in small groups, the most effective strategy resides in contributing only when a majority of individuals are also contributors. In contrast, when group size becomes large, the most effective behaviour follows a minimal-effort rule: contribute only when it is strictly necessary. Both plastic strategies are observed in natural scenarios across scales that present them as relevant social motifs for the sustainable management of public goods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627111PMC
http://dx.doi.org/10.1098/rsif.2012.1006DOI Listing

Publication Analysis

Top Keywords

sustainable growth
8
public good
8
plasticity facilitates
4
facilitates sustainable
4
growth
4
growth commons
4
commons commons
4
commons communities
4
communities growth
4
growth depends
4

Similar Publications

Aquaculture systems generate large amounts of sludge that represent serious environmental threats if discharged directly into local ecosystems. However, this nutrient-rich sediment can contribute to nutrient cycling by being applied as an organic fertilizer to ornamental medicinal trees during their early growth stages. To investigate the potential advantages of using recirculating aquaculture system sludge (RASS) and biofloc technology sludge (BFTS) as organic fertilization alternatives to chemical fertilization, a pot trial was conducted at the Faculty of Agriculture, Cairo University, Egypt.

View Article and Find Full Text PDF

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of the gynogenetic large-scale loach (Paramisgurnus dabryanus).

Sci Data

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.

View Article and Find Full Text PDF

Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data.

Sci Data

January 2025

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China.

The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020.

View Article and Find Full Text PDF

Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!