A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sarcomeric dysfunction contributes to muscle weakness in facioscapulohumeral muscular dystrophy. | LitMetric

Objective: To investigate whether sarcomeric dysfunction contributes to muscle weakness in facioscapulohumeral muscular dystrophy (FSHD).

Methods: Sarcomeric function was evaluated by contractile studies on demembranated single muscle fibers obtained from quadriceps muscle biopsies of 4 patients with FSHD and 4 healthy controls. The sarcomere length dependency of force was determined together with measurements of thin filament length using immunofluorescence confocal scanning laser microscopy. X-ray diffraction techniques were used to study myofilament lattice spacing.

Results: FSHD muscle fibers produced only 70% of active force compared to healthy controls, a reduction which was exclusive to type II muscle fibers. Changes in force were not due to changes in thin filament length or sarcomere length. Passive force was increased 5- to 12-fold in both fiber types, with increased calcium sensitivity of force generation and decreased myofilament lattice spacing, indicating compensation by the sarcomeric protein titin.

Conclusions: We have demonstrated a reduction in sarcomeric force in type II FSHD muscle fibers, and suggest compensatory mechanisms through titin stiffening. Based on these findings, we propose that sarcomeric dysfunction plays a critical role in the development of muscle weakness in FSHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589299PMC
http://dx.doi.org/10.1212/WNL.0b013e318282513bDOI Listing

Publication Analysis

Top Keywords

muscle fibers
16
sarcomeric dysfunction
12
muscle weakness
12
dysfunction contributes
8
muscle
8
contributes muscle
8
weakness facioscapulohumeral
8
facioscapulohumeral muscular
8
muscular dystrophy
8
healthy controls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!