Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
α-Fe(2)O(3) nanofibers are synthesized by a simple and efficient electrospinning method and the selective determination of folic acid (FA) is demonstrated in the presence of an important physiological interferent, ascorbic acid (AA), using the α-Fe(2)O(3) nanofiber modified glassy carbon (GC) electrode at physiological pH. Bare GC electrode fails to determine the concentration of FA in the presence of a higher concentration of AA due to the surface fouling caused by the oxidized products of AA and FA. However, modification with α-Fe(2)O(3) nanofibers not only separates the voltammetric signals of AA and FA by 420 mV between AA and FA, but also enhances higher oxidation current. The amperometric current response is linearly dependent on FA concentration in the range of 60-60,000 nM, and the α-Fe(2)O(3) nanofiber modified electrode displayed an excellent sensitivity for FA detection with an experimental detection limit of 60 nM (1.12 × 10(-10) M (S/N = 3)). Furthermore, the α-Fe(2)O(3) nanofiber modified electrode showed an admirable selectivity towards the determination of FA even in the presence of a 1000-fold excess of AA and other common interferents. This modified electrode has been successfully applied for determination of FA in human blood serum samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an00070b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!