Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies suggest that electrides--ionic crystals in which electrons serve as anions--are not exceptional materials but rather a generalized form, particularly under high pressure. The topology of the cavities confining anionic electrons determines their physical properties. At present, reported confining sites consist only of zero-dimensional cavities or weakly linked channels. Here we report a layered-structure electride of dicalcium nitride, Ca(2)N, which possesses two-dimensionally confined anionic electrons whose concentration agrees well with that for the chemical formula of [Ca(2)N](+)·e(-). Two-dimensional transport characteristics are demonstrated by a high electron mobility (520 cm(2) V(-1) s(-1)) and long mean scattering time (0.6 picoseconds) with a mean free path of 0.12 micrometres. The quadratic temperature dependence of the resistivity up to 120 Kelvin indicates the presence of an electron-electron interaction. A striking anisotropic magnetoresistance behaviour with respect to the direction of magnetic field (negative for the field perpendicular to the conducting plane and positive for the field parallel to it) is observed, confirming diffusive two-dimensional transport in dense electron layers. Additionally, band calculations support confinement of anionic electrons within the interlayer space, and photoemission measurements confirm anisotropic low work functions of 3.5 and 2.6 electronvolts, revealing the loosely bound nature of the anionic electrons. We conclude that Ca(2)N is a two-dimensional electride in terms of [Ca(2)N](+)·e(-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature11812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!