Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLCs has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(β-amino ester) (PBAE) polymers that self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis, and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using nonviral polymeric nanoparticles. This technology may have general applicability as a novel anticancer strategy based on restoration of tumor suppressor gene function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624031PMC
http://dx.doi.org/10.1158/1535-7163.MCT-12-0956DOI Listing

Publication Analysis

Top Keywords

polyβ-amino ester
8
nanoparticle delivery
8
delivery tp53
8
small cell
8
cell lung
8
lung cancer
8
vitro vivo
8
tp53
6
ester nanoparticle
4
tp53 activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!