Background: The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life.

Methods: We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed.

Results: Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test).

Conclusions: Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0b013e31827fa453DOI Listing

Publication Analysis

Top Keywords

untransduced control
12
insulin-like growth
8
rat islets
8
cell death
8
versus ad-gfp
8
ad-gfp untransduced
8
control islets
8
islet
7
islets
6
igf-ii
5

Similar Publications

Sarcomas are rare, mesenchymal tumors, representing about 10-15% of all childhood cancers. GD2 is a suitable target for chimeric antigen receptor (CAR) T-cell therapy due to its overexpression in several solid tumors. In this preclinical study, we investigated the potential use of iCasp9.

View Article and Find Full Text PDF

Evaluating clinically translatable conditioning for platelet gene therapy in murine hemophilia A with inhibitors.

J Thromb Haemost

November 2024

Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA; Midwest Athletes Against Childhood Cancer and Bleeding Disorder Fund Research Center, Milwaukee, Wisconsin, USA. Electronic address:

Background: Platelet gene therapy is effective in hemophilia A (HA) mice even with inhibitors. Fludarabine (Flu), along with busulfan (Bu) or melphalan (Mel), preconditioning has been shown to be highly effective for hematopoietic stem cell transplantation in the clinic.

Objectives: To evaluate the efficacy of Bu-Flu and Mel-Flu preconditioning in platelet gene therapy of HA with inhibitors.

View Article and Find Full Text PDF

Toca 511, a tumor-selective retroviral replicating vector encoding the yeast cytosine deaminase (yCD) gene, exerts direct antitumor effects through intratumoral prodrug 5-fluorocytosine (5-FC) conversion to active drug 5-fluorouracil by yCD, and has demonstrated therapeutic efficacy in preclinical and clinical trials of various cancers. Toca 511/5-FC treatment may also induce antitumor immunity. Here, we first examined antitumor immune responses activated by Toca 511/5-FC treatment in an immunocompetent murine pancreatic cancer model.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying CAR T-cells, a type of cell used to treat certain cancers, to see how they work with a specific part of the immune system called T-cell receptors (TCRs).
  • They tested different CAR T-cells to see how well they respond when stimulated, looking for effects like growth and production of immune chemicals.
  • The results showed that one type of CAR (called 4-1BBζ) made T-cells better at growing and fighting infections, but it could also cause problems if it mistakenly targets healthy body tissues.
View Article and Find Full Text PDF

Background: During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!