Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170 vs. 140 mM, osmolarity ranging from 360 to 300 mOsm/L) inhibits proinflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Proinflammatory activation of HMVECs was investigated in response to tumor necrosis factor-α (TNF-α), including interleukin 8 (IL-8) release, intercellular adhesion molecule 1 (ICAM-1) surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression but did lead to concentration-dependent decreases in TNF-α-induced IL-8 release, ICAM-1 surface expression, and PMN-HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNF-α activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNF-α-stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNF-α induced nuclear factor-κB DNA binding, but HTS conditions attenuated this by 31% (P < 0.01). In conclusion, HTS reduces PMN-HMVEC adhesion and TNF-α-induced proinflammatory activation of primary HMVECs via attenuation of nuclear factor-κB signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602232 | PMC |
http://dx.doi.org/10.1097/SHK.0b013e3182894016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!