Bcl-2/E1B 19-kDa interacting protein 3 (BNIP3) is a proapoptotic protein whose expression level is often low in colorectal cancer (CRC) cells due to the BNIP3 gene promoter DNA methylation by DNA methyltransferase (DNMT). It is known that chemotherapy and radiotherapy suppress CRC through inducing tumor apoptosis. However, the molecular mechanisms underlying chemotherapy and radiotherapy-induced apoptosis of CRC cells are not well defined. In this study, we observed that the expression level of BNIP3 in colon cancer cells was significantly increased by treatment with therapeutic agents and radiation in vitro. The BNIP3 protein level in CRC tissues from patients who received preoperative concurrent chemotherapy was significantly higher than in those who received surgery alone. Furthermore, treatment with chemotherapeutic agents and radiation significantly decreased the DNMT1 expression level and enzymatic activity. Both expression level and activity of DNMT1 were inversely correlated with the expression level of BNIP3 in colon carcinoma cells after treatment with chemotherapeutic agents and radiation. Consistent with increased BNIP3 expression, chemotherapeutic agents and radiation induced colon carcinoma cell apoptosis in a dose-dependent manner. Based on these observations, we conclude that chemotherapy and radiotherapy inhibit DNMT1 expression to upregulate BNIP3 expression to promote CRC cell apoptosis. And, BNIP3 may play a role in the caspase-dependent apoptosis pathways, mainly during treatment with chemotherapy and radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000345916 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.
Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Technology and Research Research & Development Center (MARGEM), Hatay Mustafa Kemal University, Hatay, Turkey.
Nicotine, the main toxic component of tobacco, directly or indirectly causes adverse effects on the liver metabolism. Melatonin, secreted by the pineal gland, has anti-apoptotic activity as well as antioxidant activity. The aim of this study was to reveal the antiapoptotic effects of melatonin in rats with experimentally induced chronic liver damage with nicotine.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia.
Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.
Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.
Front Biosci (Landmark Ed)
December 2024
Center for Immunology and Cellular Biotechnology, Institute of Medicine and Life Sciences, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia.
Background: Epidermal growth factor receptor 4 (ERBB4) and neuregulin 4 (NRG4) have been shown to reduce steatosis and prevent the development of non-alcoholic steatohepatitis in mouse models, but little to nothing is known about their role in non-alcoholic fatty liver disease (NAFLD) in humans. This study is the first to investigate the expression of and mRNAs and their role in lipid metabolism in the livers of individuals with obesity, type 2 diabetes and biopsy-proven NAFLD.
Methods: Liver biospecimens were obtained intraoperatively from 80 individuals.
Front Biosci (Landmark Ed)
December 2024
Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Background: Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!