BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

J Neurochem

Section of Central Nervous System Pharmacology, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.

Published: April 2013

AI Article Synopsis

  • NMDA receptor activity is linked to excitotoxicity, a key factor in Huntington's disease (HD) progression.
  • The neurotrophin BDNF influences NMDA receptors and interacts with adenosine A2ARs, affecting their behavior in HD models.
  • BDNF showed potential to enhance NMDA effects in healthy mice but provided protection against NMDA toxicity in R6/2 HD mice, a benefit which was abolished when A2ARs were blocked.

Article Abstract

NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.12177DOI Listing

Publication Analysis

Top Keywords

nmda-induced toxicity
8
huntington's disease
8
bdnf nmda-induced
8
r6/2 mice
8
bdnf
7
effects
5
nmda
5
bdnf prevents
4
prevents nmda-induced
4
toxicity models
4

Similar Publications

Extracts from plants/herbals are great resources of drugs and nutrients. Baicalein, a component present in , was previously found to alleviate the abnormal depolarization brought about by Aβ oligomers. We extended this promising outcome by screening baicalein derivatives, and a natural compound named homoplantaginin was pinpointed.

View Article and Find Full Text PDF

We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Objective: This investigation was to determine the relationship between changes in the expression levels of miR-134 and the E2F transcription factor 6 (E2F6) in mediating control of apoptosis in N-methyl-D-aspartate (NMDA)-induced glaucomatous mice.

Methods: Morphological and structural changes were quantitatively analyzed along with apoptosis in the retinal ganglion cell (RGC) layer, internal plexiform layer and RGCs. Glaucomatous RGCs were transfected, and cell viability and apoptosis were examined.

View Article and Find Full Text PDF

The selective disruption of the JNK2/Syntaxin-1A interaction by JGRi1 protects against NMDA-evoked toxicity in SH-SY5Y cells.

Neurochem Int

October 2024

EBRI Rita Levi-Montalcini Foundation, Rome, Italy; Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy. Electronic address:

N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets.

View Article and Find Full Text PDF

Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!