Prototropic equilibria in ionized DNA play an important role in charge transport and radiation damage of DNA and, therefore, continue to attract considerable attention. Although it is well-established that electron attachment will induce an interbase proton transfer from N1 of guanine (G) to N3 of cytosine (C), the question of whether the surrounding water in the major and minor grooves can protonate the one-electron-reduced G:C base pair still remains open. In this work, density functional theory (DFT) calculations were employed to investigate the energetics and mechanism for the protonation of the one-electron-reduced G:C base pair by water. Through the calculations of thermochemical cycles, the protonation free energies were estimated to be in the range of 11.6-14.2 kcal/mol. The calculations for the models of C(•-)(H(2)O)(8) and G(-H1)(-)(H(2)O)(16), which were used to simulate the detailed processes of protonation by water before and after the interbase proton transfer, respectively, revealed that the protonation proceeds through a concerted double proton transfer involving the water molecules in the first and second hydration shells. Comparing the present results with the rates of interbase proton transfer and charge transfer along DNA suggests that protonation on the C(•-) moiety is not competitive with interbase proton transfer, but the possibility of protonation on the G(-H1)(-) moiety after interbase proton transfer cannot be excluded. Electronic-excited-state calculations were also carried out by the time-dependent DFT approach. This information is valuable for experimental identification in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp400299v | DOI Listing |
Langmuir
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Delhi, Department of Chemistry, Hauz Khas, 110016, New Delhi, INDIA.
A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!