Studies show that lysophosphatidic acid (LPA) reprogramming is associated with the development of hepatocellular carcinoma (HCC). This manuscript evaluates the MDR2(-/-) model of HCC as a tool to examine the role of LPA reprogramming in the initiation/progression of HCC and identify novel treatment targets. Hepatic tumors developed in MDR2(-/-) mice between 9-12 m and serum LPA levels were greater in MDR2(-/-) when compared to controls. Blocking LPA biosynthesis/signaling significantly reduced tumor burden. LPA biosynthesis/signaling plays an important role in murine MDR2(-/-) model and is potentially linked to regulation of TNFα or other cytokines that are relevant to high-risk patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07357907.2012.762779 | DOI Listing |
Neuropharmacology
January 2025
Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain. Electronic address:
Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA-null mice of both sexes.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, España. Electronic address:
Mammalian hibernation offers a unique model for exploring neuroprotective mechanisms relevant to neurodegenerative diseases. In this study, we employed untargeted lipidomics with iterative tandem mass spectrometry (MS/MS) to profile the brain lipidome of Syrian hamsters across different hibernation stages: late torpor, arousal, and euthermia (control). Previously, a lipid species identified as methyl-PA(16:0/0:0) showed a significant increase during torpor, but its precise structure was unresolved due to technological constraints.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!