Secondary interactions are demonstrated to direct the stability of well-defined Ru-NHC-based heterogeneous alkene metathesis catalysts. By providing key stabilization of the active sites, higher catalytic performance is achieved. Specifically, they can be described as interactions between the metal center (active site) and the surface functionality of the support, and they have been detected by surface-enhanced (1)H-(29)Si NMR spectroscopy of the ligand and (31)P solid-state NMR of the catalyst precursor. They are present only when the metal center is attached to the surface via a flexible linker (a propyl group), which allows the active site to either react with the substrate or relax, reversibly, to the surface, thus providing stability. In contrast, the use of a rigid linker (here mesitylphenyl) leads to a well-defined active site far away from the surface, stabilized only by a phosphine ligand which under reaction conditions leaves probably irreversibly, leading to faster decomposition and deactivation of the catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja311722k | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China.
The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.
Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.
View Article and Find Full Text PDFSmall
January 2025
Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India.
Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!