Chorioretinal atrophy after electrical injury.

Digit J Ophthalmol

Department of Ophthalmology, University of Colorado School of Medicine, Denver, Colorado.

Published: January 2013

A 26-year-old-man who had suffered a severe electrical injury 3 years previously presented with blurred vision in his left eye caused by a posterior subcapsular cataract with nuclear sclerotic changes and peripapillary chorioretinal scarring. The pattern of retinal atrophy surrounding the optic nerve suggests a possible path of electrical current to the eye and demonstrates the selective tissuedamage that may occur in electrical injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516166PMC
http://dx.doi.org/10.5693/djo.02.2011.07.003DOI Listing

Publication Analysis

Top Keywords

electrical injury
8
chorioretinal atrophy
4
electrical
4
atrophy electrical
4
injury 26-year-old-man
4
26-year-old-man suffered
4
suffered severe
4
severe electrical
4
injury years
4
years presented
4

Similar Publications

Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals.

View Article and Find Full Text PDF

After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.

View Article and Find Full Text PDF

Effects of spinal stimulation and short-burst treadmill training on gait biomechanics in children with cerebral palsy.

Gait Posture

January 2025

Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Research and Education on Accessible Technology and Experiences, University of Washington, Seattle, WA, USA. Electronic address:

Background: Children with cerebral palsy (CP) have an injury to the central nervous system around the time of birth that affects the development of the brain and spinal cord. This injury leads to changes in gait neuromechanics, including muscle activity and joint kinematics. Transcutaneous spinal cord stimulation (tSCS) is a novel neuromodulation technique that may improve movement and coordination in children with CP when paired with targeted physical therapy.

View Article and Find Full Text PDF

Abolition of Aorticorenal Ganglia Pacing Responses Improves Denervation Efficacy.

Hypertension

January 2025

Cardiology Department (P.B., X.L., V.T.T., M.A.B., A.V., E.Y., D.M.N., U.P., J.L., S.P.T., P.C.Q.), Westmead Hospital, Sydney, Australia.

Background: Transcatheter renal denervation (RDN) remains inconsistent despite developments in ablation technologies, due to the lack of an intraprocedural physiological end point.

Objective: To identify whether aorticorenal ganglion (ARG) guided RDN using microwave (MW) catheter leads to more consistent denervation outcomes compared with empirical MW ablation.

Methods: Pigs underwent sham procedure (n=8) or bilateral RDN using an in-house built open-irrigated MW catheter.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!