Human stefins and cystatins are physiologically important cysteine proteinase inhibitors, acting as a first line of defense against undesirable proteolysis. Mutations in the cystatin B gene cause a rare form of epilepsy EPM1. Its two missense mutants, G50E and Q71P, lack the inhibitory activity and are partially unfolded, which leads to changes in their aggregation behavior, both in vitro and in the cell. SDS-PAGE and MALDI-TOF mass spectrometry were used to follow the hydrolysis of human stefin B wild type, G50E and Q71P, by cathepsins B and S in vitro. Cathepsin S was found to degrade both mutants, with Q71P being degraded faster. This correlates with the openness of the protein structure, Q71P having more exposed hydrophobic surfaces. Cathepsin B acted more selectively, degrading G50E into smaller fragments, while still leaving a portion of the full-length protein intact. Q71P was cleaved only at the exposed N-terminal end. The co-localization of stefin B wild type and EPM1 mutants with cathepsins showed that cathepsins accumulate around the aggregates formed by the EPM1 mutants. We hypothesize that the aggregation of both full-length mutants prevents the cathepsin molecule from accessing the substrate protein's core, whereas the cleaved fragments would be expected to aggregate stronger.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2012-0278 | DOI Listing |
J Mol Recognit
January 2017
Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.
We describe studies performed thus far on stefin B from the family of cystatins as a model protein for folding and amyloid fibril formation studies. We also briefly mention our studies on aggregation of some of the missense EPM1 mutants of stefin B in cells, which mimic additional pathological traits (gain in toxic function) in selected patients with EPM1 disease. We collected data on the reported interactors of stefin B and discuss several hypotheses of possible cytosolic alternative functions.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2014
Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia. Electronic address:
EPM1 is a rare progressive myoclonus epilepsy accompanied by apoptosis in the cerebellum of patients. Mutations in the gene of stefin B (cystatin B) are responsible for the primary defect underlying EPM1. Taking stefin B aggregates as a model we asked what comes first, protein aggregation or oxidative stress, and how these two processes correlate with cell death.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2013
Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
Cystatin B (CSTB) is an anti-protease frequently mutated in progressive myoclonus epilepsy (EPM1), a devastating degenerative disease. This work shows that rat CSTB is an unstable protein that undergoes structural changes following the interaction with a chaperone, either prokaryotic or eukaryotic. Both the prokaryotic DnaK and eukaryotic HSP70 promote CSTB polymerization.
View Article and Find Full Text PDFBiol Chem
June 2013
Jožef Stefan Institute, Department of Biochemistry, Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia.
Human stefins and cystatins are physiologically important cysteine proteinase inhibitors, acting as a first line of defense against undesirable proteolysis. Mutations in the cystatin B gene cause a rare form of epilepsy EPM1. Its two missense mutants, G50E and Q71P, lack the inhibitory activity and are partially unfolded, which leads to changes in their aggregation behavior, both in vitro and in the cell.
View Article and Find Full Text PDFFront Mol Neurosci
October 2012
Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute Ljubljana, Slovenia.
Epilepsies are characterized by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1), also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!