Two near isomeric clusters containing a novel {Mn(8)W(4)} Keggin cluster within a [W(36)Mn(10)Si(4)O(136)(OH)(4)(H(2)O)8](24-) cluster are reported: K(10)Li(14)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8)] (1) and K(10)Li1(3.5)Mn(0.25)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8) ] (1'). Bulk characterization of the clusters has been carried out by single crystal X-ray structure analysis, ICP-MS, TGA, ESI-MS, CV and SQUID-magnetometer analysis. X-ray analysis revealed that 1' has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two "intermediate" types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X-ray analysis and revealed to be novel clusters K(4)Li(22)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·56H(2)O (2) and Mn(2)K(8)Li(14)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·45H(2)O (3). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X-ray crystallography directly facilitated understanding the means by which a POM assembled.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201204345DOI Listing

Publication Analysis

Top Keywords

type isomerism
8
single crystal
8
crystal x-ray
8
x-ray analysis
8
analysis revealed
8
clusters assemble
8
final clusters
8
clusters
7
nanoscale control
4
control polyoxometalate
4

Similar Publications

A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker.

Molecules

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.

View Article and Find Full Text PDF

Computational Study on the Dynamics of a Bis(benzoxazole)-Based Overcrowded Alkene.

J Phys Chem A

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden.

Understanding and controlling molecular motions is of pivotal importance for designing molecular machinery and functional molecular systems, capable of performing complex tasks. Herein, we report a comprehensive theoretical study to elucidate the dynamic behavior of a bis(benzoxazole)-based overcrowded alkene displaying several coupled and uncoupled molecular motions. The benzoxazole moieties give rise to 4 different stable conformers that interconvert through single-bond rotations.

View Article and Find Full Text PDF

Modulating room-temperature phosphorescence of D-π-A luminogens via methyl substitution, positional isomerism, and host-guest doping.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.

View Article and Find Full Text PDF

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!