The effect of the CcaR regulatory protein on expression of the cephamycin C gene cluster is studied. Quantitative reverse transcription PCR (qRT-PCR) expression analysis of the cephamycin biosynthesis genes in the ccaR-disrupted strain, S. clavuligerus ccaR::aph, revealed that in the absence of CcaR, the lat and cmcI genes expression was reduced 2,200- and 1,087-fold compared with the wild type. Expression of pcbAB-pcbC-cefD-cefE-cmcJ-cmcH and blp was 225- to 359-fold lower, while expression of pcbR-pbpA-bla and orf10 was only slightly affected if at all, indicating that resistance and regulatory genes are not under CcaR control as opposed to pathway biosynthetic genes. In the intergenic cmcH-ccaR region, a small messenger RNA (mRNA) overlaps with the cmcH transcription terminator. Deletion of 688 bp of the intergenic region results in a strain, S. clavuligerus ΔRI, still able to produce cephamycin C and clavulanic acid but at levels 30-40% lower than the parental strain. Therefore, specific sequences in the intergenic region upstream of ccaR enhance the expression of ccaR but are not essential for its expression. Strains containing an additional ccaR gene integrated in the chromosome, S. clavuligerus pSET-PC, or multiple copies of ccaR expressed from the PglpF promoter, S. clavuligerus pAK23, were constructed. Fermentations of the pAK23 strain resulted in a 6.1-fold increase in specific cephamycin C production relative to the wild type. In the same experiments, qRT-PCR analysis of the cephamycin biosynthesis genes showed a 5.1-fold increase in ccaR expression and similar increases in expression of lat and cmcI, while expression of other cluster genes were increased in the order of 2- to 3-fold.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-013-4721-4DOI Listing

Publication Analysis

Top Keywords

intergenic region
12
cephamycin biosynthesis
12
expression
10
ccar
9
analysis cephamycin
8
biosynthesis genes
8
strain clavuligerus
8
lat cmci
8
wild type
8
cephamycin
6

Similar Publications

Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae.

Nat Commun

January 2025

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.

View Article and Find Full Text PDF

One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2'-OH group of ribose at the binding site to create read-through mutations during reverse transcription.

View Article and Find Full Text PDF

One-pot ligation of multiple mRNA fragments on dsDNA splint advancing regional modification and translation.

Nucleic Acids Res

January 2025

Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China.

Region-specific RNA modifications are crucial for advancing RNA research and therapeutics, including messenger RNA (mRNA)-based vaccines and immunotherapy. However, the predominant method, synthesizing regionally modified mRNAs with short single-stranded DNA (ssDNA) splints, encounters challenges in ligating long mRNA fragments due to the formation of RNA self-folded complex structures. To address this issue, we developed an efficient strategy using an easily obtained long double-stranded DNA (dsDNA) as a ligation splint after in situ denaturing, while parts of this dsDNA are the templates for transcribing mRNA fragments.

View Article and Find Full Text PDF

Fitness landscapes of human microsatellites.

PLoS Genet

December 2024

Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate.

View Article and Find Full Text PDF

A microRNA with a non-canonical precursor structure harbours an intron in between its miRNA-5p and miRNA-3p relevant for its biogenesis, is conserved across Solanaceae, and targets the mRNA of low phosphate root. Hundreds of miRNAs have been identified in plants and great advances have been accomplished in the understanding of plant miRNA biogenesis, mechanisms and functions. Still, many miRNAs, particularly those with less conventional features, remain to be discovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!