Dentin matrix acidic phosphoprotein 1 (DMP1) is an acidic, highly phosphorylated, noncollagenous protein secreted during dentin and bone formation. Previous functional studies of DMP1 have revealed various motifs playing a role in either mineralization or cell differentiation. We performed an evolutionary analysis of DMP1 to identify residues and motifs that were conserved during 220 millions years (Ma) of mammalian evolution, and hence have an important function. In silico search provided us with 41 sequences that were aligned and analyzed using the Hyphy program. We showed that DMP1 contains 55 positions that were kept unchanged for 220 Ma. We also defined in a more precise manner some motifs that were already known (i.e., cleavage sites, RGD motif, ASARM peptide, glycosaminoglycan chain attachment site, nuclear localization signal sites, and dentin sialophosphoprotein-binding site), and we found five, highly conserved, new functional motifs. In the near future, functional studies could be performed to understand the role played by them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-013-9539-2DOI Listing

Publication Analysis

Top Keywords

dentin matrix
8
matrix acidic
8
acidic phosphoprotein
8
phosphoprotein dmp1
8
mammalian evolution
8
functional studies
8
dmp1
5
dentin
4
dmp1 light
4
light mammalian
4

Similar Publications

Optimizing natural human-derived decellularized tissue materials for periodontal bone defect repair.

Biochem Biophys Res Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. Electronic address:

Periodontal disease is a major contributor to tooth loss worldwide in adults. Particularly, periodontal bone defect is a common clinical condition, yet current therapeutic strategies exhibit limited effectiveness. Recently, natural bone graft materials have attracted considerable interest for enhancing bone defect repair due to their superior biocompatibility and osteogenic capabilities.

View Article and Find Full Text PDF

Asiatic acid methyl ester, a new asiaticoside derivative, induces osteogenic differentiation of hPDLCs.

Arch Oral Biol

January 2025

Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellent in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, Thailand.

Objective: Asiaticoside has the capacity to induce osteogenic differentiation of human periodontal ligament cells (hPDLCs) through Wnt (Wingless-related integration site) signaling. A modified chemical structure (by removing glycoside side chain), referred to as asiatic acid methyl ester (AA1), has been constructed and evaluated for its capacity to induce osteogenic differentiation.

Design: hPDLCs viability was determined by MTT assay.

View Article and Find Full Text PDF

Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.

ACS Biomater Sci Eng

January 2025

Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.

Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

Matrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!