AI Article Synopsis

  • Scientists found that using a drug called bevacizumab helps patients with a type of brain cancer called glioblastoma respond better to chemotherapy and live longer without the cancer getting worse.
  • However, tumors often adapt and resist the treatment, so researchers are exploring other drugs that can work well with bevacizumab to stop this resistance.
  • In their study, they discovered that combining bevacizumab with another drug called dichloroacetate (DCA) worked much better together than using either one alone, suggesting this combo could be a strong fight against brain cancer.

Article Abstract

Inhibition of vascular endothelial growth factor increases response rates to chemotherapy and progression-free survival in glioblastoma. However, resistance invariably occurs, prompting the urgent need for identification of synergizing agents. One possible strategy is to understand tumor adaptation to microenvironmental changes induced by antiangiogenic drugs and test agents that exploit this process. We used an in vivo glioblastoma-derived xenograft model of tumor escape in presence of continuous treatment with bevacizumab. U87-MG or U118-MG cells were subcutaneously implanted into either BALB/c SCID or athymic nude mice. Bevacizumab was given by intraperitoneal injection every 3 days (2.5 mg/kg/dose) and/or dichloroacetate (DCA) was administered by oral gavage twice daily (50 mg/kg/dose) when tumor volumes reached 0.3 cm(3) and continued until tumors reached approximately 1.5-2.0 cm(3). Microarray analysis of resistant U87 tumors revealed coordinated changes at the level of metabolic genes, in particular, a widening gap between glycolysis and mitochondrial respiration. There was a highly significant difference between U87-MG-implanted athymic nude mice 1 week after drug treatment. By 2 weeks of treatment, bevacizumab and DCA together dramatically blocked tumor growth compared to either drug alone. Similar results were seen in athymic nude mice implanted with U118-MG cells. We demonstrate for the first time that reversal of the bevacizumab-induced shift in metabolism using DCA is detrimental to neoplastic growth in vivo. As DCA is viewed as a promising agent targeting tumor metabolism, our data establish the timely proof of concept that combining it with antiangiogenic therapy represents a potent antineoplastic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661713PMC
http://dx.doi.org/10.1007/s00109-013-0996-2DOI Listing

Publication Analysis

Top Keywords

athymic nude
12
nude mice
12
treatment bevacizumab
8
u118-mg cells
8
tumor
5
dichloroacetate reverses
4
reverses hypoxic
4
hypoxic adaptation
4
bevacizumab
4
adaptation bevacizumab
4

Similar Publications

Addition of PARP1-inhibition enhances chemoradiotherapy and thermoradiotherapy when treating cervical cancer in an mouse model.

Int J Hyperthermia

December 2025

Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Efficacy of current treatment options for cervical cancer require improvement. Previous studies have shown the enhancing effects of the addition of PARP1-inhibitors to chemoradiotherapy and thermoradiotherapy. The aim of our present study was to test efficacy of different combinations of treatment modalities radiotherapy, cisplatin, hyperthermia and PARP1-inhibitors using tumor models, treated patient samples and tumor models.

View Article and Find Full Text PDF

The C-X-C chemokine receptor 4 (CXCR4) is highly upregulated in most cancers, making it an ideal target for delivering radiation therapy to tumors. We previously demonstrated the feasibility of targeting CXCR4 in vivo using a radiolabeled derivative of EPI-X4, an endogenous CXCR4 antagonist, named DOTA-K-JM#173. However, this derivative showed undesirable accumulation in the kidneys, which would limit its clinical use.

View Article and Find Full Text PDF

Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.

View Article and Find Full Text PDF

Rapid progressing non-small cell lung adenocarcinoma (NSCLC) decreases treatment success. Cannabinoids emerge as drug candidates for NSCLC due to their anti-tumoral capabilities. We previously reported the controlled release of Arachidonylcyclopropylamide (ACPA) selectively targeting cannabinoid 1 (CB1) receptor in NSCLC cells in vitro.

View Article and Find Full Text PDF

Meningiomas are the most common primary central nervous system tumor. Clinical trials have failed to support effective medical treatments, despite initially promising animal studies. A key issue could be that available experimental models fail to mimic the clinical situation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!