Photolysis may be a significant route of pesticide dissipation on crops, leading to an increase of pesticide use. Spraying strong absorbing compounds (photoprotector) along with pesticide is an attractive strategy to prevent the photodegradation phenomenon. The aim of this study is to get a better understanding of the parameters governing the photoprotection efficiency. Experiments were conducted using formulated sulcotrione as a pesticide and a grape wine extract as a photoprotector. These compounds were irradiated using simulated solar light as dried deposits on carnauba wax films or on disks of tobacco leaves and analyzed by ultra performance liquid chromatography ultraviolet (UV), spectroscopy, and microscopy. It is shown that photolysis is faster on leaves than on carnauba wax and that the photoprotection effect of grape wine extract is more efficient on leaves than on wax. Images recorded by microscopy bring evidence that deposits are very different on the two supports both in the absence and in the presence of the photoprotector. The grape wine extract plays a double role; it is antioxidant and UV screen. Photoprotection by the grape wine extract is a complex mixing of UV screen and antioxidant effects. The UV screen effect can be rationalized by considering the rate of light absorption by sulcotrione. Our results demonstrate that the rates of sulcotrione phototransformation are mainly governed by the repartition of the deposit on the solid support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-013-1490-7 | DOI Listing |
Plant Dis
January 2025
University of California Davis, Cooperative Extension, Napa, California, United States;
The timely detection of viral pathogens in vineyards is a critical aspect of management. Diagnostic methods can be labor-intensive and may require specialized training or facilities. The emergence of artificial intelligence (AI) has the potential to provide innovative solutions for disease detection but requires a significant volume of high-quality data as input.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Division of Ecology and Evolution, Research School Research of Biology, The Australian National University, Acton, ACT, Australia.
Food Chem
December 2024
Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand. Electronic address:
Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.
View Article and Find Full Text PDFPharmaceutics
January 2025
Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.
Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Wine Agency of Georgia, Tbilisi 0159, Georgia.
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!