CeO(2) has been identified as an efficient catalyst for HCl oxidation in the temperature range of 623-723 K provided that the oxygen content in the feed mixture was sufficiently high to avoid bulk chlorination and thus deactivation. Here we characterise ceria in its fresh and post-reaction states by adsorption of CO(2), NH(3) and CO. Micro-calorimetry, FTIR and TPD experiments are complemented by DFT calculations, which assess adsorption energies and vibrational frequencies. The calculations were performed on the lowest energy surface, CeO(2)(111), with perfect termination and with various degrees of hydroxylation and/or chlorination. Both experiments and calculations suggest that the basic character of the ceria surface has been eliminated upon reaction in HCl oxidation, indicating that most of the basic lattice O sites are exchanged by chlorine and that the OH groups formed are rather acidic. The density and the strength of surface acidic functions increased significantly upon reaction. An in situ FTIR reaction cell has been designed and constructed to study the evolution of OH group density of the ceria surface during HCl oxidation. The effect of experimental variables, such as pO(2), pHCl and temperature, has been investigated. We found that the OH group density positively correlated with the reactivity in the pO(2) and temperature series, whereas negative correlation was observed when pHCl was varied. Implications of the above observations to the reaction mechanism are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp42767b | DOI Listing |
Materials (Basel)
January 2025
GRIMAT Engineering Institute Company Limited, Beijing 101407, China.
Due to the development of the petroleum industry, more severe mining conditions put forward higher corrosion resistance requirements for materials. In this paper, the corrosion resistance and corrosion behavior of four TC4-xNi-yNb (x, y = 0, 0.5) alloys were investigated in a 1 mol/L HCl solution through microscopic characterization, electrochemical tests and corrosion weight loss testing.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Clinica Medica "Augusto Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, 70124 Bari, Italy.
The integrity of esophageal epithelial cells in patients with gastroesophageal reflux disease (GERD) or GERD-like symptoms is the first mechanism of protection to decrease the sensitivity to gastric reflux and heartburn symptoms. We investigated the protective effects of Poliprotect (PPRO), a CE-marked medical device, on esophageal epithelial integrity using in vitro and ex vivo models. In vitro, the protective effects of PPRO were tested on Caco-2 cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules --as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine-were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!