Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: MicroRNAs (miRNAs) participate in the regulation of cardiac hypertrophy. However, it remains largely unknown as to how miRNAs are integrated into the hypertrophic program. Ca/calmodulin-dependent protein kinase II (CaMKII) is a hypertrophic signaling marker. It is not yet clear which miRNAs can regulate CaMKIIδ.
Purpose: In this study, we identified which miRNAs could regulate CaMKIIδ and how to regulate CaMKIIδ.
Methods: Through computational and expression analyses, miR-30b-5p was identified as a candidate regulator of CaMKIIδ. Quantitative expression analysis of hypertrophic models demonstrated significant down-regulation of miR-30b-5p compared with control groups. Luciferase reporter assay showed that miR-30b-5p could significantly inhibit the expression of CaMKIIδ. Moreover, through gain-of-function and loss-of-function approaches, we found miR-30b-5p could negatively regulate the expression of CaMKIIδ and miR-30b-5p was a regulator of cardiac hypertrophy.
Conclusion: Our study demonstrates that the expression of miR-30b-5p is down-regulated in cardiac hypertrophy, and restoration of its function inhibits the expression of CaMKIIδ, suggesting that miR-30b-5p may act as a hypertrophic suppressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2310/JIM.0b013e3182819ac6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!