A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A progestin (17α,20β-dihydroxy-4-pregnen-3-one) stimulates early stages of spermatogenesis in zebrafish. | LitMetric

Recently, evidence has been provided for multiple regulatory functions of progestins during the late mitotic and meiotic phases of spermatogenesis in teleost fish. For example, our previous studies suggested that 17α,20β-dihydroxy-4-pregnen-3-one (DHP), potentially via Sertoli cells that express the progesterone receptor (pgr) gene, can contribute to the regulation of zebrafish spermatogenesis. To further our understanding of the function of DHP at early spermatogenetic stages, we investigated in the present study the expression of genes reflecting Sertoli cell function and spermatogenic development in adult zebrafish testis after DHP treatment in tissue culture. Moreover, using an in vivo model of estrogen-mediated down-regulation of androgen production to interrupt adult spermatogenesis, we studied the effects of DHP on estrogen-interrupted spermatogenesis. In this model, DHP treatment doubled the testis weight, and all differentiating germ cell types, such as type B spermatogonia and primary spermatocytes, were abundantly present and incorporated the DNA-synthesis marker (BrdU). Accordingly, transcript levels of germ cell marker genes were up-regulated. Moreover, transcripts of two Sertoli cell-derived genes anti-müllerian hormone (amh) and gonadal soma-derived growth factor (gsdf) were up-regulated, as were three genes of the insulin-like growth factor signaling system, insulin-like growth factor 2b (igf2b), insulin-like growth factor 3 (igf3) and insulin-like growth factor 1b receptor (igf1rb). We further analyzed the relationship between these genes and DHP treatment using a primary zebrafish testis tissue culture system. In the presence of DHP, only igf1rb mRNA levels showed a significant increase among the somatic genes tested, and germ cell marker transcripts were again up-regulated. Taken together, our results show that DHP treatment induced the proliferation of early spermatogonia, their differentiation into late spermatogonia and spermatocytes as well as expression of marker genes for these germ cell stages. DHP-mediated stimulation of spermatogenesis and hence growth of spermatogenic cysts and the associated increase in Sertoli cell number may in part explain the elevated expression of Sertoli cell genes, but our data also suggest an up-regulation of the activity of the Igf signaling system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2013.01.005DOI Listing

Publication Analysis

Top Keywords

growth factor
20
dhp treatment
16
germ cell
16
insulin-like growth
16
sertoli cell
12
dhp
8
genes
8
zebrafish testis
8
tissue culture
8
cell marker
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!