CPEB1 regulates the expression of MTDH/AEG-1 and glioblastoma cell migration.

Mol Cancer Res

Department of Molecular, Cellular & Developmental Biology, 260 Whitney Ave, KBT 338, Box 208103, New Haven, CT 06520, USA.

Published: February 2013

Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is an mRNA-binding protein present in both neurons and glia. CPEB1 is capable of both repressing mRNA translation and activating it depending upon its phosphorylation state. CPEB1-bound mRNAs are held in translational dormancy until CPEB1 is phosphorylated, leading to the cytoplasmic polyadenylation of the bound mRNA that triggers translation. Here, we show that CPEB1 can bind to and regulate translation of the mRNA-encoding metadherin (MTDH, also known as AEG-1 and Lyric) in the rat glioblastoma cell line CNS1. MTDH/AEG-1 is being revealed as a critical signaling molecule in tumor progression, playing roles in invasion, metastasis, and chemoresistance. By using a mutant of CPEB1 that cannot be phosphorylated (thereby holding target mRNAs in translational arrest), we show that inhibiting CPEB1-mediated translation blocks MTDH/AEG-1 expression in vitro and inhibits glioblastomas tumor growth in vivo. CPEB1-mediated translation is likely to impact several signaling pathways that may promote tumor progression, but we present evidence suggesting a role in directed cell migration in glioblastoma cells. In addition, reporter mRNA containing CPEB1-binding sites is transported to the leading edge of migrating cells and translated, whereas the same mRNA with point mutations in the binding sites is synthesized perinuclearly. Our findings show that CPEB1 is hyperactive in rat glioblastoma cells and is regulating an important cohort of mRNAs whose increased translation is fueling the progression of tumor proliferation and dispersal in the brain. Thus, targeting CPEB1-mediated mRNA translation might be a sound therapeutic approach.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-12-0498DOI Listing

Publication Analysis

Top Keywords

glioblastoma cell
8
cell migration
8
cytoplasmic polyadenylation
8
mrna translation
8
cpeb1 phosphorylated
8
rat glioblastoma
8
tumor progression
8
cpeb1-mediated translation
8
glioblastoma cells
8
cpeb1
7

Similar Publications

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Background And Purpose: Diffusion tensor imaging (DTI) has been proposed to guide the anisotropic expansion from gross tumor volume to clinical target volume (CTV), aiming to integrate known tumor spread patterns into the CTV. This study investigate the potential of using a DTI atlas as an alternative to patient-specific DTI for generating anisotropic CTVs.

Materials And Methods: The dataset consisted of twenty-eight newly diagnosed glioblastoma patients from a Danish national DTI protocol with post-operative T1-contrast and DTI imaging.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Due to the lack of effective therapeutic approach, glioblastoma (GBM) remains one of the most malignant brain tumour. By in vitro investigations on primary GBM stem cells, we highlighted one of the underlying mechanisms of drug resistance to alkylating agents, the DNA damage responses. Here, flow cytometric analysis and viability and repopulation assays were used to assess the long-term cytotoxic effect induced by the administration of a fourth-generation platinum prodrug, the (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato) platinum(IV) named Pt(IV)Ac-POA, in comparison to the most widely used Cisplatin.

View Article and Find Full Text PDF

Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.

Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!