Introduction: Cell therapy is a rapidly growing area of research for the treatment of osteoarthritis (OA). This work is aimed to investigate the efficacy of intra-articular adipose-derived stromal cell (ASC) injection in the healing process on cartilage, synovial membrane and menisci in an experimental rabbit model.
Methods: The induction of OA was performed surgically through bilateral anterior cruciate ligament transection (ACLT) to achieve eight weeks from ACLT a mild grade of OA. A total of 2×10⁶ and 6×10⁶ autologous ASCs isolated from inguinal fat, expanded in vitro and suspended in 4% rabbit serum albumin (RSA) were delivered in the hind limbs; 4% RSA was used as the control. Local bio-distribution of the cells was verified by injecting chloro-methyl-benzamido-1,1'-dioctadecyl-3,3,3'3'-tetra-methyl-indo-carbocyanine per-chlorate (CM-Dil) labeled ASCs in the hind limbs. Cartilage and synovial histological sections were scored by Laverty's scoring system to assess the severity of the pathology. Protein expression of some extracellular matrix molecules (collagen I and II), catabolic (metalloproteinase-1 and -3) and inflammatory (tumor necrosis factor- α) markers were detected by immunohistochemistry. Assessments were carried out at 16 and 24 weeks.
Results: Labeled-ASCs were detected unexpectedly in the synovial membrane and medial meniscus but not in cartilage tissue at 3 and 20 days from ASC-treatment. Intra-articular ASC administration decreases OA progression and exerts a healing contribution in the treated animals in comparison to OA and 4% RSA groups.
Conclusions: Our data reveal a healing capacity of ASCs in promoting cartilage and menisci repair and attenuating inflammatory events in synovial membrane inhibiting OA progression. On the basis of the local bio-distribution findings, the benefits obtained by ASC treatment could be due to a trophic mechanism of action by the release of growth factors and cytokines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672720 | PMC |
http://dx.doi.org/10.1186/ar4156 | DOI Listing |
Curr Rheumatol Rep
January 2025
Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia.
Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression.
View Article and Find Full Text PDFPediatr Rheumatol Online J
January 2025
Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Background: An accurate diagnosis of septic versus reactive or autoimmune arthritis remains clinically challenging. A multi-omics strategy comprising metagenomic and proteomic technologies were undertaken for children diagnosed with presumed septic arthritis to advance clinical diagnoses and care for affected individuals.
Methods: Twelve children with suspected septic arthritis were prospectively enrolled to compare standard of care tests with a rapid multi-omics approach.
JCI Insight
January 2025
Sensory & Motor System Medicine.
Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and progressive joint destruction. Neutrophil extracellular traps (NETs), a microreticular structure formed after neutrophil death, have recently been implicated in RA pathogenesis and pathological mechanisms. However, the underlying molecular mechanisms and key genes involved in NET formation in RA remain largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!