Although research on neural tissue repair has made enormous progress in recent years, spinal cord injury remains a devastating condition for which there is still no cure. In fact, recent estimates of prevalence in the United States reveal that spinal cord injury has undergone a five-fold increase in the last decades. Though, it has become the second most common neurological problem in North America after Alzheimer's disease. Despite modern trauma units and intensive care treatments, spinal cord injury remains associated with several comorbid conditions and unbearable health care costs. Regular administration of a plethora of symptomatic drug treatments aimed at controlling related-secondary complications and life-threatening problems in chronic spinal cord-injured patients has recently been reported. This article provides a thorough overview of the main drug classes and products currently used or in development for chronic spinal cord injury. Special attention is paid to a novel class of drug treatment designed to provide a holistic solution for several chronic complications and diseases related with spinal cord injury. There is clear evidence showing that new class can elicit 'on-demand' episodes of rhythmic and stereotyped walking activity in previously completely paraplegic animals and may consequently constitute a simple therapy against several physical inactivity-related comorbid problems. Understanding further pharmacological approaches to chronic spinal cord injury may improve both life expectancy and overall quality of life while reducing unsustainable cost increases associated with this debilitation condition.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612811319240009DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cord injury
28
chronic spinal
16
pharmacological approaches
8
approaches chronic
8
spinal
8
injury remains
8
cord
7
injury
7
chronic
5

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Holocord syringomyelia in 18 dogs.

Front Vet Sci

January 2025

Pride Veterinary Referrals, IVC Evidensia Group, Derby, United Kingdom.

Holocord syringomyelia (HSM) is characterized by a continuous spinal cord cavitation along its entire length and is currently poorly documented in dogs. This retrospective multicentric case series investigates the clinical and MRI findings in 18 dogs with HSM. The median age at presentation was 82 months (range 9-108 months) and French Bulldogs were overrepresented (50%).

View Article and Find Full Text PDF

Background: Patients with cervical spinal cord injuries (CSCIs) have a high incidence of respiratory complications. The effectiveness of non-invasive positive pressure ventilation (NPPV) in preventing respiratory complications such as pneumonia in acute CSCIs remains unclear. We evaluated whether intermittent NPPV (iNPPV) could prevent pneumonia in patients with acute CSCIs.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!