Objective: The aim of this study was to assess the impact of transcriptional induction on thyroid follicular cell (TFC) differentiation from endodermally matured embryonic stem (ES) cells. The thyroid transcription factors-NKx2 homeobox 1 (NKx2-1, formerly called TTF-1) and Paired box gene 8 (Pax8)-are known to associate biochemically and synergistically in the activation of thyroid functional genes including the sodium/iodide symporter (NIS), thyrotropin (TSH) receptor (TSHR), thyroglobulin (Tg), and thyroid peroxidase (TPO) genes. In this study, we investigated the ability of ectopically expressed Pax8 and NKx2-1 to further the induction and differentiation of murine ES cells into potential TFCs.

Methods: ES cells were stably transfected with either the Pax8 gene, the NKx2-1 gene, or both genes to study the induction of NIS, TSHR, Tg, and TPO genes as assessed using both quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and protein expression. The derived cells were cultured with or without the presence of activin A to allow their differentiation into multipotent endodermal cells.

Results: The four thyroid-specific genes NIS, TSHR, Tg, and TPO were all significantly activated by expressing both transcription factors within the same ES cell. In contrast, significant but much lower transcriptional activity of the TSHR, Tg, and TPO genes was detected in cells expressing just NKx2-1, and only the NIS and TSHR genes responded to Pax8 alone. No Tg protein expression could be detected prior to their development into endodermal derivatives. However, after further differentiation of postembryoid body ES cells with activin A and TSH into endodermal cell lines, those cells with dual transfection of Pax8 and NKx2-1 demonstrated greatly enhanced expression of the NIS, TSHR, Tg, and TPO genes to such a degree that it was similar to that found in control thyroid cells. Furthermore, these same cells formed three-dimensional neofollicles in vitro and expressed Tg protein, but these phenomena were absent from lines expressing only Pax8 or NKx2-1.

Conclusion: These findings provide further evidence that co-expression of Pax8 and NKx2-1 in murine ES cells may induce the differentiation of thyroid-specific gene expression within endodermally differentiated ES cells and commit them to form three-dimensional neofollicular structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610443PMC
http://dx.doi.org/10.1089/thy.2012.0644DOI Listing

Publication Analysis

Top Keywords

tpo genes
16
nis tshr
16
tshr tpo
16
cells
12
pax8 nkx2-1
12
multipotent endodermal
8
stem cells
8
genes
8
genes study
8
murine cells
8

Similar Publications

Congenital hypothyroidism (CH) is a common neonatal endocrine disorder that is characterized by irreversible neurodevelopmental and growth retardation due to insufficient biosynthesis of thyroid hormones at birth. Determining the causative genetic variants in infants is important for neonatal management. It was aimed to evaluate the variant frequencies and spectrum of CH in the neonatal population of Foshan, China.

View Article and Find Full Text PDF

Thyrotropin receptor (TSHR) and insulin-like growth factor 1 receptor (IGF-1R) have been shown to crosstalk in primary cultures of human thyrocytes (hThyros) and Graves' orbital fibroblasts. The phenomenon of TSHR/IGF-1R crosstalk has been largely studied in the pathogenesis of thyroid eye disease (TED) in human orbital fibroblasts. Here, we investigated the effects of inhibiting the IGF-1R-mediated contribution to crosstalk by linsitinib (Lins), a small-molecule IGF-1R kinase inhibitor, on TSH-induced regulation of thyroperoxidase (TPO) and thyroglobulin (TG) mRNAs and proteins in hThyros and on TPO and TG mRNAs and free thyroxine (fT4) levels in mice.

View Article and Find Full Text PDF

Could Be a Promising Marker for Preoperative Diagnosis of High-Grade Papillary Thyroid Carcinoma?

Diagnostics (Basel)

November 2024

Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.

Background/objectives: A modern classification distinguishes between two nosological entities posing an intermediate risk between differentiated and anaplastic carcinoma: poorly differentiated thyroid carcinoma and differentiated high-grade thyroid carcinoma. There are currently few studies searching for the preoperative molecular genetic markers of high-grade papillary thyroid carcinoma (PTC HG), primarily because of a recent WHO reclassification and singling out of a separate entity: high-grade follicular cell-derived nonanaplastic thyroid carcinoma. Therefore, this work was aimed at identifying PTC HG-specific microRNAs and mRNAs that reliably distinguish them from differentiated papillary thyroid carcinoma in preoperative cytology specimens (fine-needle aspiration biopsies).

View Article and Find Full Text PDF

Background: Kallmann syndrome (KS) is a rare genetic disorder marked by hypogonadotropic hypogonadism and either anosmia or hyposmia. It exhibits genetic heterogeneity, with mutations identified in only 30 % of cases, involving various genes such as KAL1, FGFR1, FGF8, CHD7, and SOX10. Here, we present a case of gonadotropin deficiency associated with KS, observed in both a mother and her daughter, the latter conceived through assisted reproductive technology using the mother's ovum.

View Article and Find Full Text PDF

Diagnostic boundaries between immune thrombocytopenia (ITP) and other thrombocytopenic states such as thrombocytopenic myelodysplastic syndromes, may be difficult to establish, and the detection of somatic mutations by next generation sequencing (NGS) may be of aid. Here we aimed at characterizing the prevalence and clinical significance of clonal hematopoiesis in ITP. In this multicentric retrospective observational study we enrolled 167 adult ITP patients, followed at 13 centers in Italy, UK, and USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!